GALGO masthead 2.2 1000x200 1000x199.1.jpg
HOME > PRODUCTS > ADAS

ADAS


REVEALING THE STRUCTURE OF FIBROTIC TISSUE

P102 Layer Animation.gifADAS-VT LOGO.jpg

Product

ADAS-VT (Automatic Detection of Arrhythmic Substrate) is a product1 intended for the Planning of Ablation Treatment of Ventricular Tachycardia using MRI. ADAS-VT processes DICOM 3D GRE Navigated MRI data to study the LV myocardium. 2D sequences are also supported.

P09_1.png

P09_0.png













A screen shot of ADAS-VT. Left: the patient MRI. Right: a 3D view used for planning ablation, of an infarcted myocardium, with scar (red), LV 10% Layer, aorta and RV.

Benefits for VT planning

  • Visualize the inside of the myocardium in 3D.     
  • Identify optimal ablation targets.
  • Help decide the approach (Endo, Epi, Combined?).
  • Export LV and other structures to formats accepted by navigation systems.

TECHNOLOGY: LAYERS

The inside of the Left Ventricle (LV) is visualized by breaking it into easy-to-understand ‘LAYERS’.

P09 LAYERS.jpg

The LAYERS can be explored interactively, and animations can be created and exported as easy-to-share videos.

ADAS-VT Layer Animation.gif








Visualization of the LV myocardium: Animation of LAYERS, going from endocardic (0%) to epicardic (100%) and back. Core tissue displayed in red. 

TECHNOLOGY: 3D INTERACTION











3D Rotate-48.png
Interactive 3D view of the LV, with scar and detected channels 
(use your mouse to rotate with the left button and zoom in and out with the right button).

TECHNOLOGY: CHANNEL DETECTION

ADAS-VT automatically analyzes the 3D structure of the LV obtained from the MRI and detects border-zone corridors. These corridors, or 'channels' have been found in the literature to be responsible for the re-entrant circuits that could be the source of arrhythmia. 
EAM vs ADAS P102 v4.jpg

Left: MRI LV with Channels displayed in white. 
Right: Electro-anatomical Map of the same patient showing voltage map and Late Potentials.
Image Courtesy of Dr Antonio Berruezo, Hospital Clinic de Barcelona, Spain

The detection method2 operates in a topological space which makes it suitable for either fast layer-based detection (detecting on a per-layer basis) or for in-depth 3D detection to account for transmural channels.

P09_11.jpg

TECHNOLOGY: EXPORT to EP navigation

Finally, it exports myocardial information relevant to guide the ablation to formats accepted by EP navigation systems. 

RAOadas.jpg
A LV displayed within an EP navigation system.


Image Courtesy of Leipzig Heart Center, Dept. of Rhythmology, Prof. G. Hindricks.

GALLERY


BARTS.png
LEIP008_3.jpg
Image courtesy of Dr Manisty and Dr Bhuva,
Barts Heart Centre, St Bartholomew's Hospital, London.
Image Courtesy of Leipzig Heart Center, 
Dept. of Rhythmology, Prof. G. Hindricks
 INCOR005_6.jpg CURSOVTNOV2015_4.png
Image Courtesy of Dr Mauricio Scanavacca
INCOR, Sao Paulo, Brazil
Image Courtesy of Dr Antonio Berruezo
Hospital Clinic de Barcelona, Spain

Partners

ADAS-VT is developed in partnership with Hospital Clínic de Barcelona, Spain.

Publications related to ADAS-VT

  1. Penela, D., Acosta, J., Andreu, D., Ortiz-Perez, J. T., Bosch, X., Perea, R. J., de Caralt, T.M., Fernández-Armenta, J., Soto-Iglesias, D., Prat-Gonzalez, S., Borràs, R., Mont, L., Hervas, V., Morales-Ruiz, M., Jiménez, W., Mira, A., Donnelly, J., Ekinci, O., Lasalvia, L., Berruezo, A. (2017). Identification of the potentially arrhythmogenic substrate in the acute phase of ST-segment elevation myocardial infarction. Heart Rhythm. 
  2. Acosta, J., Andreu, D., Penela, D., Cabrera, M., Carlosena, A., Korshunov, V., Vassanelli, F., Borras, R., Martínez, M., Fernández-Armenta, J., Linhart, M., Tolosana, J. M., Mont, L., Berruezo, A. (2016). Elucidation of hidden slow conduction by double ventricular extrastimuli: a method for further arrhythmic substrate identification in ventricular tachycardia ablation procedures. EP Europace, 1–10. 
  3. Acosta, J., Fernández-Armenta, J., Borras, R., Anguera, I., Bisbal, F., Martí-Almor, J., Tolosana, J.M., Penela, D., Andreu, D., Soto-Iglesias, D., Evertz, R., Matiello, M., Alonso, C., Villuendas, R., de Caralt, T.M., Perea, R.J., Ortiz, J.T., Bosch, X., Serra, L., Planes, X., Greiser, A., Ekinci, O., Lasalvia, L., Mont, L., Berruezo, A. (2017). Scar characterization to predict life-threatening Arrhythmic events and sudden cardiac death in Cardiac Resynchronization Therapy patients. The GAUDI-CRT study. JACC: Cardiovascular Imaging, in press.
  4. Andreu, D., Penela, D., Acosta, J., Fernández-Armenta, J., Perea, R. J., Soto-Iglesias, D., … Berruezo, A. (2017). Cardiac Magnetic Resonance-Aided Scar Dechanneling. Influence on Acute and Long-Term Outcomes. Heart Rhythm, in press.
  5. Soto-Iglesias, D., Penela, D., Planes, X., Zimmer, V., Acosta, J., Andreu, D., Piella, G., Sebastian, R., Sancher-Quintana, D., Berruezo, A., Camara, O. (2017). Quasi-Conformal Technique for Integrating and Validating Myocardial Tissue Characterization in MRI with Ex-Vivo Human Histological Data. In Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (pp. 172–181). 
  6. Serra, L., Figueras i Ventura, R. M., Planes, X., Steghöfer, M., Fernández-Armenta, J., Penela, D., Acosta, J., Berruezo, A. (2017). Identification of border-zone corridors in the left ventricle using the core expansion method. In E. Romero, N. Lepore, J. Brieva, & I. Larrabide (Eds.) (p. 1016011). 
  7. Acosta, J., Penela, D., Andreu, D., Cabrera, M., Carlosena, A., Vassanelli, F., Alarcón, F., Soto-Iglesias, D., Korshunov, V., Borras, R., Linhart, M., Martínez, M., Fernández-Armenta, J., Mont, L.,  Berruezo, A. (2017). Multielectrode vs. point-by-point mapping for ventricular tachycardia substrate ablation: a randomized study. EP Europace, 1–8.
  8. Fernández-Armenta, J., Penela, D., Acosta, J., Andreu, D., Evertz, R., Cabrera, M., Korshunov, V., Vassanelli, F., Martínez, M., Guasch, E., Arbelo, E., Tolosana, J.M., Mont, L., Berruezo, A. (2016). Substrate modification or ventricular tachycardia induction, mapping, and ablation as the first step? A randomized study. Heart Rhythm, 13(8), 1589–1595. 
  9. Soto-Iglesias, D., Butakoff, C., Andreu, D., Fernández-Armenta, J., Berruezo, A.,  Camara, O. (2016). Integration of electro-anatomical and imaging data of the left ventricle: An evaluation framework. Medical Image Analysis, 32(X), 131–144. 
  10. Acosta Martínez, J., & Berruezo, A. (2017). Abordajes alternativos a la fracción de eyección en la estratificación de riesgo de arritmias ventriculares. Cardiocore, 52(1), 7–10. 
  11. Zuluaga, A. (2016). Utilidad de la RM en la evaluación de la fibrosis miocárdica. Conferencia Virtual Mensual ACR.
  12. Andreu, D., Ortiz-Pérez, J. T., Fernández-Armenta, J., Guiu, E., Acosta, J., Prat-González, S., De Caralt, T. M., Perea, R. J., Garrido, C., Mont, L., Brugada, J., Berruezo, A. (2015). 3D delayed-enhanced magnetic resonance sequences improve conducting channel delineation prior to ventricular tachycardia ablation. Europace, 17(6), 938–945. 
  13. Fernández-Armenta, J., Penela, D., Acosta, J., Andreu, D.,  Berruezo, A. (2015). Approach to Ablation of Unmappable Ventricular Arrhythmias. Cardiac Electrophysiology Clinics, 7(3), 527–537. 
  14. Berruezo, A., Fernandez-Armenta, J., Andreu, D., Penela, D., Herczku, C., Evertz, R., Cipolletta, L., Acosta, J., Borras, R., Arbelo, E., Tolosana, J.M., Brugada, J., Mont, L. (2015). Scar Dechanneling: New Method for Scar-Related Left Ventricular Tachycardia Substrate Ablation. Circulation: Arrhythmia and Electrophysiology, 8(2), 326–336. 
  15. Penela Maceda, D., Acosta Martínez, J., Andreu Caballero, D., De Caralt Robira, T. M., Mont Girbau, L., Bosch Genover, X., Brugada Terradellas, J.,  Berruezo Sánchez, A. (2014). Identificación no invasiva del sustrato arrítmico en la fase aguda del infarto. Revista Española de Cardiología, 67(Supl 1), 1081.
  16. Penela, D., Acosta, J., Fernandez-Armenta, J., Andreu, D., de Caralt, T. M., Mont, L., Ortiz, J.T., Brugada, J., Berruezo, A. (2014). Identification of the arrhythmogenic substrate in acute phase of STEMI. European Heart Journal (Abstract Supplement), 35, 269.
  17. Fernandez-Armenta, J., Berruezo, A., Andreu, D., Camara, O., Silva, E., Serra, L., Barbarito, V., Carotenutto, L., Evertz, R., Ortiz-Perez, J. T., De Caralt, T. M., Perea, R. J., Sitges, M., Mont, L., Frangi, A., Brugada, J. (2013). Three-Dimensional Architecture of Scar and Conducting Channels Based on High Resolution ce-CMR: Insights for Ventricular Tachycardia Ablation. Circulation: Arrhythmia and Electrophysiology, 6(3), 528–537. 
  18. Barbarito, V., Carotenuto, L., Serra, L., Càmara, O., Fernandez-Armenta, J., & Frangi, A. (2012). A software application for three-dimensional visualization and quantification of scars and conducting channels based on pre-procedure CE-MRI in patients with ventricular tachycardia, im, 2–5.
  19. Fernández-Armenta, J., Berruezo, A., Mont, L., Sitges, M., Andreu, D., Silva, E., Ortiz-Pérez, J. T., Tolosana, J. M., De Caralt, T. M., Perea, R. J., Calvo, N., Trucco, E., Borràs, R., Matas, M., A., Brugada, J. (2012). Use of myocardial scar characterization to predict ventricular arrhythmia in cardiac resynchronization therapy. Europace, 14(11), 1578–1586. 
  20. Andreu, D., Berruezo, A., Ortiz-Perez, J. T., Silva, E., Mont, L., Borras, R., de Caralt, T. M., Perea, R. J., Fernandez-Armenta, J., Zeljko, H., Brugada, J. (2011). Integration of 3D Electroanatomic Maps and Magnetic Resonance Scar Characterization Into the Navigation System to Guide Ventricular Tachycardia Ablation. Circulation: Arrhythmia and Electrophysiology, 4(5), 674–683.